

1

An Empirical Shipment Size Model for Urban Freight

Takanori Sakai^a, André Romano Alho^a, Tetsuro Hyodo^b, Moshe Ben-Akiva^c

^aSingapore-MIT Alliance for Research and Technology, Singapore ^bTokyo University of Marine Science and Technology, Japan ^cMassachusetts Institute of Technology, U.S.A.

- 1. Background
- 2. Literature Review
- 3. Economic Order Quantity Model
- 4. Empirical Model Estimation (Data, Model, Result)
- 5. Effects of Receiver / Shipper Function on Predictive Performance
- 6. Conclusions

Background

- Shipment size prediction is required in freight transport simulations (especially for micro-simulations).
- Past research on shipment size is mostly for inter-city shipments.
- Economic Order Quantity (EOQ) model may not be applicable for intracity shipments.
- This research:
 - Analyzes how the characteristics of intra-city shipment play a role in the size selection.
 - Examines if a theoretical EOQ model is directly applicable to intracity shipments.

Literature Review

- Freight models that simulate logistics decisions incorporate shipment size models:
 - Wisetjindawat and Sano (2003), Wisetjindatwat et al. (2005), Roorda et al. (2010), Liedtke (2009)

- Joint models for mode choice and shipment or vehicle size:
 - Abate and de Jong (2014), Abate et al. (2018), Pourabdollahi et al. (2013), Irannezhad et al. (2017)
- Combes (2012) confirms the validity of a simple EOQ model using shipment records in France

Shipment:

Goods, or a bundle of goods, that is transported together at the same time between a shipper and a receiver (de Bok and Tavasszy, 2018)

Contract:

A specification of the total commodity flow (in weight) between a shipper and a receiver per time period

A shipment size model determines the **<u>shipment size/frequency</u>** for a **<u>contract</u>**.

total logistics cost (TLC) for a contract i

• $TLC_i = Transport Cost_i + Inventory Cost_i$ $+ Capital Cost during Transport_i$

Transport $Cost_i = Q_i/q_i \cdot o_i(q_i, d_i)$

 $o_i(q_i, d_i) = (\beta_1 + \beta_2 \cdot q_i) \cdot d_i$

Inventory Cost at the Receiver_i = $q_i/2 \cdot w_i$

 Q_i :Size of contract

 q_i : Shipment size

 $o_i(q_i, d_i)$: Transport cost per shipment

 d_i : Shipment distance

 w_i : Storage cost per unit

EOQ-based Formulation (cont'd)

•
$$TLC_i = Q_i/q_i \cdot (\beta_1 + \beta_2 \cdot q_i) \cdot d_i + q_i/2 \cdot w_i$$

+other costs independ from q_i

Minimizing TLC with respect to q_i results in:

$$\ln q_i = 1/2 \ln Q_i + 1/2 \ln d_i - 1/2 \ln w_i + 1/2 \ln 2\beta_1$$

 Q_i :Size of contract

 q_i : Shipment size

 $o_i(q_i, d_i)$: Transport cost per shipment

 d_i : Shipment distance

 w_i : Storage cost per unit

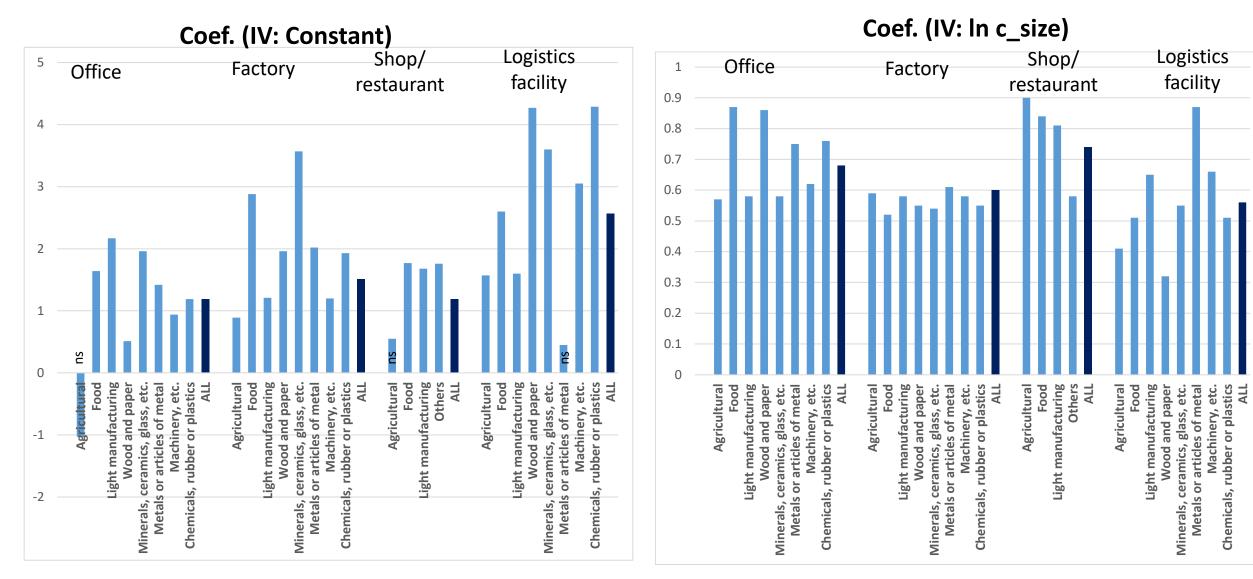
Data for Empirical Model Estimation

Sample Size

- Data from 2013 Tokyo Metropolitan Freight Survey
- 20.5 thou. inbound shipments (intra-city only)
- Model estimation for each commodity - receiver func. combination

Commodity F	Receiver function			
	Office	Factory	Shop & restaurant	Logistics facility
Agricultural	101	849	78	427
Food	176	1,003	160	1,581
Light manufacturing	587	2,744	107	1,102
Wood and paper	341	347	26	364
Minerals, ore, stone, cement, ceramics or glass	124	611	32	83
Metals or articles of metal	369	3,616	21	318
Machinery, appliances, and mechanical parts.	519	2,193	78	414
Chemicals, rubber or plastics	342	1,595	40	239

Empirical Model Specification


• Assume each shipment is associated with a "contract"

$$ln s_{i^{n}} = \beta_{const.} + \beta_{lfship} \cdot dum_{lfship_{i^{n}}} + \beta_{c_{size}} \cdot ln c_{size_{i^{n}}} + \beta_{dist.} \cdot ln dist_{i^{n}} + \beta_{lfship_{dist.}} \cdot dum_{lfship_{i^{n}}} \cdot ln dist_{i^{n}} + \beta_{LP} \cdot ln LP_{n}$$

$c_size_i^n$: Contract size (metric ton per annual)

- *dist*.*i*^{*n*}: Shipment distance (km)
- LP_n : Land price at the receiver's location (mil. JPY per m²)
- $dum_{lfship_{in}}$: Dummy variable (1 if the shipper is a logistics facility)

Results

 High for logistics facilities; low for office and shop/restaurant

Close to 0.5 for factories

Results (cont'd)

 Distance plays a greater role for shipments to factory or of agricultural products

0.7

0.5

0.3

0.1

-0.1

-0.3

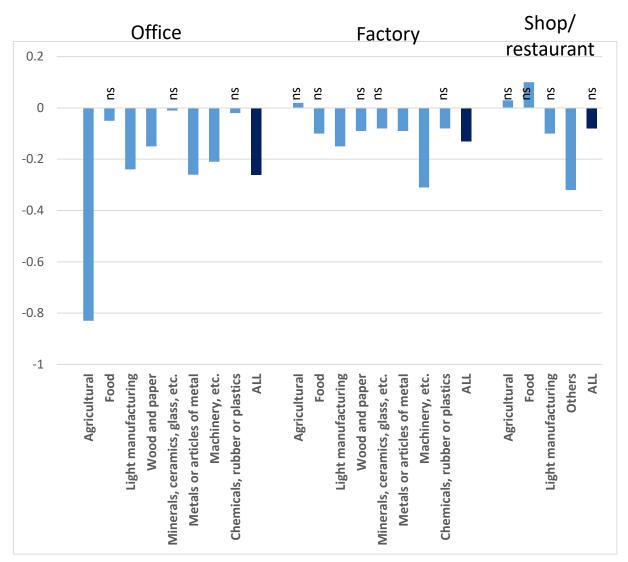
-0.5

-0.7

- Potentially due to **FTL** shipping
- For shipments from LFs, the effects decrease even to negative values.
 - Potentially due to consolidation

Shop/ Logistics Factory Office facility restaurant ns ns ns Machinery etc. stics Light manufacturing others Wetabor articles of metal solatices of metal Mireas, ceanic, poper etc. Metalsor articles of metal ubber of plastics Lightmanufacturing Lightmanufacturing Agricultural ABICULUUIA Agricultural Machinery' etc. All Machineryetc rubberorph Lightman chemicals, Minerals

from non-LF


from LF

Coef. (IV: In dist.)

Results (cont'd)

 Note: LP was not included in the models to logistics facilities

- The effects are remarkable when the receivers are offices
 - Indicating high shadow price of storage

Coef. (IV: In LP)

Effects of Receiver / Shipper Function

- To measure the contribution of **the function type information** to the predictive performance, three segmentation methods are tested:
 - (i) no segmentation
 - (ii) segmentation **by shipper function**
 - (iii) segmentation by receiver function
 - (iv) segmentation by the shipper and receiver function combination
- Model specification:

$$\ln s_{i^n} = \beta_{const.}^{c,seg} + \beta_{c_size}^{c,seg} \cdot \ln c_size_{i^n} + \beta_{dist.}^{c,seg} \cdot \ln dist_{i^n} + \beta_{LP}^{c,seg} \cdot \ln LP_n$$

 Randomly selected 60% for training; the rest 40% for validation; repeated 100 times

Effects of Receiver / Shipper Function (cont'd)

• Comparison of predictive performance

Segmentation method	Average Mean Squared Error
No segmentation	2.548
Segmentation by shipper function	2.445
Segmentation by receiver function	2.422
Segmentation by the receiver and shipper function combination	2.403

- The **conceptual EOQ model** is inappropriate to use in an urban context.
- It is important to consider **both receiver function and commodity types** to capture the heterogeneity in the shipment size selection mechanism.
- The **shipper function** allows for capturing the difference in transport cost structure.
- The contribution of the receiver & shipper function data to the overall predictive performance might be limited, though not negligible.

This research is supported in part by the Singapore Ministry of National Development and the National Research Foundation, Prime Minister's Office under the Land and Liveability National Innovation Challenge (L2 NIC) Research Programme (L2 NIC Award No L2 NICTDF1-2016-1.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Singapore Ministry of National Development and National Research Foundation, Prime Minister's Office, Singapore. We thank the Urban Redevelopment Authority of Singapore, JTC Corporation and Land Transport Authority of Singapore for their support. We also thank the Transportation Planning Commission of the Tokyo Metropolitan Region for sharing the data for this research.