

Last Mile Delivery Activities in the City Centre – Insights into Current Practices and Characteristics of Delivery Trips

11th International Conference on City Logistics 12th-14th June 2019

Khalid Aljohani, PhD Student

kaaljohani@uj.edu.au

Russell. G. Thompson, Associate Professor rgthom@unimelb.edu.au

Outline

- Overview of Last Mile Delivery in the Inner-City Area
- Operational Activities and Issues
- Overview of Data Collections Techniques:
 - Semi-structured Interviews with Couriers, Express and Parcel (CEP) Service Providers
 - Online Survey of Freight Carriers
- □ Assessment of Last Mile Delivery Network and Delivery Practices of CEP Service Providers
- ☐ Characteristics of Delivery Trips in Inner-City
- Discussions and Policy Implications

Introduction

- Last mile deliveries are complex due to (Antún et al. 2018):
 - freight demand,
 - structure of area,
 - sensitive surrounding uses
 - density of the delivery points
- Lack of segmentation of the current practices of last mile delivery
- Limited data on characteristics of light commercial vehicles (LCVs) in the city centre.
- The main contribution of the article is two fold:
 - A) The attributes of the delivery trips occurring within inner-city area
 - b) Ranking of the negative issues on the efficiency of the freight carriers

Overview of Last Mile Delivery in the City Centre

- Commercial receivers and individual consumers require different type, size and frequency of deliveries
- High-rise towers attract large number of express and fragmented
- The rate of successful deliveries on first attempt for **B2B** deliveries is higher than **B2C** (Allen et al. 2018).
- 13-14% of all online purchase in UK weren't successful in first attempt, which resulted in £771 million additional costs (IMRG 2014)
- Failure rate for parcel deliveries in the Netherlands and Belgium is
 25% and 14% respectively (Buldeo Rai et al. 2018)

Operational Activities and Issues

- The efficiency of freight carriers is affected due to:
 - -exacerbated traffic congestion,
 - -limited parking
 - -loading infrastructure
 - -unsustainable delivery vehicles
- Allen et al. (2018): the vehicle delays have increased by 31% in London.
 Congestion is expected to increase 60% by 2030.
- Marcucci et al. (2015): inefficient on-street loading zones complicate freight deliveries into the area
- (UW Supply Chain Transportation & Logistics Center 2018): Couriers use the kerbside to deliver 87% of all buildings
- Allen et al. (2018): 95% of the deliveries were performed using kerbside in central London
- Jensen (2017): In 2016, UPS paid \$US17 million parking fines in New York.
- Alho and e Silva (2014): parking away from receiver, the size and volume of parcels that couriers could carry is significantly constrained

Overview of Data Collection Techniques

- Two main data collection techniques were applied:
 - Semi-structured interviews: with 10 logistics managers of Couriers, Express & Parcel (CEP) service providers in Melbourne, Australia
 - Online survey: by depot managers of freight carriers in Melbourne. The survey collected selected operational data including: product type, average vehicle fill rate, decision-maker, number of daily rounds, number of stops, average number of parcels and the rate of successful delivery on 1st attempt
- 55 participants
- 28 % active response rate
- The 55 freight carriers represent 20 % of all freight carriers that operate in Greater Melbourne

Assessment of Last Mile Delivery Network and Delivery Practices of CEP Service Providers

- Large CEPs, inter-state and intra-state consignments transported using heavy trucks with curtain-sider tautliner trucks due to:
 - higher payload capacity, secured, weather-protected and easy access
- At the depot, large CEPs use fully-automated handling and sorting systems
- Major buildings in city centre are usually serviced by an assigned delivery vehicle
- Delivery vans: for delivery and pick up in the city center and residential areas
- Trucks: in suburban areas and for deliveries to commercial receivers

Assessment of Last Mile Delivery Network and Delivery Practices of CEP Service Providers

- The driver loads parcels into the vehicles depending on loading capacity, number of delivery rounds and parcel size
- CEP companies apply different approaches scheduling parcel pick-up jobs:
 - Large CEPs schedule jobs for vans in busy zones in the afternoon
 - Some CEPs schedule jobs during both the morning and afternoon
- For the first round, vans would leave at 7 AM and around 60% loaded
- For the second round, vans would leave at 12 PM and around 40-50% loaded
- Large CEPs schedule third delivery round for 3 PM
- Couriers usually deliver 5-8 parcels per stop

 Typical fleet size for each vehicle class utilised by the participating freight carriers

- Most common fleet size includes 4-7 delivery vans.
- About 9% of freight carriers send more than 10 delivery vans
- 31% of of freight carriers use a routing & scheduling software
- 60% of freight carriers perform a single delivery round per day
- 31% of freight carriers perform a morning and afternoon delivery.
- 9% of freight carriers perform three rounds per day; two delivery and a single pickup round
- 70-80% of B2B deliveries are delivered on 1st attempt. 60% of B2C are delivered on 1st attempt

The distribution of the daily number of stops for each vehicle class.

Characteristics of Delivery Trips in the City Centre

- On average: vans typically perform daily between 60-80 stops
 - less than 50 stops for deliveries to retailers
 - 60 stops to food outlet
 - 65-75 stops for express parcel deliveries to commercial and residential receive

- The average number of stops for other vehicles in the city centre is:
 - Light truck: 40-45 stops
 - Medium truck: 25-30 stops

Ranking of Operational Issues

100-point allocation assigned by participants to the operational issues based on their influence on efficiencies of the carriers' activities in the innercity area

- Inferential Analysis of The Relationships between The Characteristics of Delivery Trips and Operational Issues
 - To explore potential associations between the property of freight carriers, characteristics of the delivery and the operational issues
 - Two Non-parametric test methods were applied: Kruskal-Wallis H and Spearman's rho correlation (Washington et al. 2010)
- Three Kruskal-Wallis H tests were performed to access relationships between::
 - Vehicle type vs characteristics of the delivery
 - Vehicle type vs operational challenges
 - Product type vs operational challenges

Relationships Between Vehicle Type <u>vs</u> Characteristics of The Delivery Trip

First Kruskal-Wallis H test:

- Significant differences in all attributes of the delivery trip between vehicle types
- LCV has a higher fill-in rate than LT (p = 0.068, r = .5) and MT (p < .001, r = .59)
 - LCV fill-in rate 60-70%
 - LT and MT fill-in rate of 50-60% and less than 40% respectively
- Higher number of stops for LCV than HT (p < .001, r = .66)
 - LCV 40 to 60 stops, while stops 20 to 40 drops
- Medium trucks delivers a significantly higher number of parcels per stop than LCV (p = .026, r = -.40)

Relationships Between Vehicle Type <u>vs</u> Operational Challenges

Second Kruskal-Wallis H test:

To evaluate difference in operational between types of vehicle

- HT drivers reported higher difficulty in finding available parking than LCV
 - HT a rating higher than 30%, whereas LCV/LT a rating of 25%
- LCV drivers higher difficulty in access to high-rise buildings than HT
 - LCV drivers reported a rating of 12.5%, whereas HT drivers stated 0%
- LT and HT drivers have higher difficulty to street design.
 - LCV reported a rating of 0%, while LT and HT 10% and 20%, respectively

Relationships Between Product Type <u>vs</u> Operational Challenges

A series of Spearman's rho correlation analyses to explore significant relationship between operational challenges and number of drops:

- Strong and negative relationship between street design and number of drops.
- For LCV, strong and negative relationship between finding available parking and number of drops
- For medium trucks, negative relationship of medium strength between traffic congestion and number of drops
- No significant relationships for light trucks.

Discussions and Policy Implications

- Increasing movements of express deliveries make it difficult to offer low-cost delivery
- Preference to operate delivery vans in the CBD area due to improved manoeuvrability, capability and reliability
- Deliveries to other parts, the efficiency of the carriers doesn't suffer from the longer travelled distance and heavy congestion
- Somewhat different figures for the characteristics of delivery trips with respect to similar studies in Europe and USA
 - Example: higher figure (53%) for the main decision-maker (the driver) of the delivery route and order than 36% reported by Torino-based study (Pronello et al. 2017)

Conclusion

- Ameliorating the last mile delivery in the congested inner-city area offer a win-win and efficient solution:
 - freight demand management (FDM) policies
 - enhancing the parking and loading infrastructure
- large receivers and building managers should coordinate their deliveries
- Freight behavioural research should be undertaken.
- The regulations and allocations of the on-street loading spaces need to be updated
- Internet of Things (IoT) technologies, license plate recognition, Smart Occupancy Signs and booking applications should be considered to be used

References

- Visser, J., Allen, J., Browne, M., Holguín-Veras, J. and Ng, J., 2018. Light Commercial Vehicles (LCVs) in urban areas, revisited. *City Logistics 1: New Opportunities and Challenges*, pp.29-43.
- Buldeo Rai, H., Verlinde, S. and Macharis, C., 2018. The "next day, free delivery" myth unravelled: Possibilities for sustainable last mile transport in an omnichannel environment. International Journal of Retail & Distribution Management.
- Aljohani, K., 2016. Integrating Logistics Facilities in Inner Melbourne to Alleviate Impacts of Urban Freight
 Transport. 38th Australasian Transport Research Forum, Conference Proceedings, Melbourne, Victoria,
 Australia. Retrieved from: https://atrf.info/papers/2016/files/ATRF2016_Full_papers_resubmission_185.pdf
- Marcucci, E., Gatta, V. and Scaccia, L., 2015. Urban freight, parking and pricing policies: An evaluation from a transport providers' perspective. Transportation Research Part A: Policy and Practice, 74, pp. 239-249.
- Jensen, T.F., 2017. Viewpoint from UPS. Presentation No. 21812. Transportation Research Board 96th Annual Meeting
- Alho, A.R. and e Silva, J.D.A., 2014. Analyzing the relation between land-use/urban freight operations and the need for dedicated infrastructure/enforcement—Application to the city of Lisbon. Research in Transportation Business & Management, 11, pp.85-97., Washington D.C., 8-12 January 2017.
- Washington, S.P., Karlaftis, M.G. and Mannering, F., 2010. Statistical and econometric methods for transportation data analysis. Boca Raton, Florida, USA: CRC press
- Pronello, C., Camusso, C. and Valentina, R., 2017. Last mile freight distribution and transport operators' needs: which targets and challenges? Transportation research Procedia, 25, pp.888-899.