What is the most environmentally sustainable solution: home deliveries or locker deliveries?

Sara Verlinde – Bart De Maere - Heleen Buldeo Rai - Cathy Macharis

11th International Conference on City Logistics19 June 2019Dubrovnik, Croatia

Economic gains

- Decreased contribution to congestion:
 - Less traffic in city centres
 - No double-parking in front of customers' homes
- Efficiency gains:
 - No failed home deliveries
 - Consolidation
 - Off-hour deliveries
- Additional income for the land or shop owner

(Cepolina & Farina, 2015; Forkert & Eichhorn, 2007; Gonzalez-feliu et al., 2012; Iwan et al., 2016; Joerss, Schröder, Neuhaus, Klink, & Mann, 2016; Morganti, Dablanc, & Fortin, 2014; Punakivi & Tanskanen, 2002; Torrentellé, Tsamboulas, & Moranti, 2012)

Environmental gains

Less pollutant emissions because of fewer vehicle kilometres by delivery vans

- < no failed deliveries
- < consolidation

(Iwan, Kijewska & Lemke, 2016; Morganti, Seidel, Blanquart, Dablanc & Lenz, 2014)

Assumption for environmental gains: consumers pick-up their purchase in a locker close to home or combine their visit to the locker box with other activities (trip chaining)

(Iwan, Kijewska & Lemke, 2016; Morganti, Seidel, Blanquart, Dablanc & Lenz, 2014; Giuffrida, Mangiaracina, Perego, & Tumino, 2012; Edwards, Mckinnon, & Cullinane, 2009; Weltevreden & Rotem-Mindali, 2009) **Research question**: What is the most environmentally sustainable solution: home deliveries or locker deliveries (considering trips by end-consumers and professionals)?

Home deliveries

Locker deliveries

Methodology

Average emitted transport related CO2 per parcel in case of home deliveries =

((D_{courier}.E_{van}) + (P_{round-trip}.F. ΣM_{collection}.E_{mode}.D_{customer collection}))/P_{round-trip}

Couriers by van

End-consumers in case of failed deliveries/various transport modes

Average emitted transport related CO2 per parcel in case of locker deliveries =

((D _{courier APS} .E _{van})/P _{APS})	+ $T.\Sigma M_{APS}.E_{mode}.D_{customer APS trip chain}$	+ (1-T). ΣM_{APS} . E_{mode} . $D_{customer APS dedicated}$
Couriers by van	End-consumers for pick-ups/various transport modes/trip chaining	End-consumers for pick-ups/various transport modes/ dedicated trips
D = distance	E = emission factor	
P = number of parcels	F = % failed deliveries	
M = % modal choice	T = % trip chaining	

Methodology

Quantification of the contributions to transport related CO2 emissions:

- 1. A non-structured interview with a logistics expert from Belgium's postal company on loading rates, types of vehicles and average distances travelled by delivery vans
- 2. An online survey among 121 users of lockers in parcel stations on trip chaining behaviour, modal choice and travelled distances the last time they had an online purchase delivered to an parcel locker station
- 3. Secondary sources on emission factors of delivery vans and passenger transport modes in Belgium.

Home deliveries

Locker deliveries

Trip chaining or dedicated trip to APS

Parcel collection by consumers (literature)				
Trip chaining	Dedicated trip	Reference		
80%	20%	Esser & Kurte, 2005		
40%	60%	Edwards et al., 2009		
74%	26%	McLeod & Cherret, 2009		
62%	28%	Belet et al., 2009		
50%	50%	Liu et al., 2017		
63%	37%	Lemke et al., 2016		

Modal choice (trip chaining to APS)

Modal choice by consumer when collecting a parcel (literature)				
Modal choice	%	Reference		
Car	62%	Edwards et al., 2010		
Car	70%	Liu et al., 2017		
Foot/Car	44%/56%	Moroz & Polkowski, 2016		
Foot	40%	Edwards et al., 2010		
Foot/Car	41%/59%	Lemke et al., 2016		

Modal choice (dedicated trip to APS)

Modal choice by consumer when collecting a parcel (literature)				
Modal choice	%	Reference		
Car	62%	Edwards et al., 2010		
Car	70%	Liu et al., 2017		
Foot/Car	44%/56%	Moroz & Polkowski, 2016		
Foot	40%	Edwards et al., 2010		
Foot/Car	41%/59%	Lemke et al., 2016		

By car, 54.10%

Results

Average emitted CO2 per parcel in case of home deliveries = 134,63g **Average emitted CO2 per parcel in case of locker deliveries** = 105,80g

Results (total g CO2 emission/parcel)

Conclusions

- Home deliveries can outperform locker deliveries when it comes to transport-related CO2 emissions
- It depends on:
 - Whether the consumer trip chains or not when collecting a parcel from a parcel locker station
 - Transport mode of the consumer => dedicated trips by car and motorcycle (and bus) score worse
 - => Don't apply the solution everywhere.

Limitations:

- Results depend on combination of emission factors for passenger and freight vehicles
- We do not know whether our sample is representative for parcel locker station users in Belgium

