

Modelling the distribution of ecommerce parcels in the city

City Logistics Conference
Ivan Cardenas ${ }^{\text {a }}$, Ivan Sanchez-Diaz ${ }^{\text {b }}$, Alan Miranda ${ }^{\text {a }}$
aUniversity of Antwerp. Department of Transport and Regional Economics
${ }^{\text {b }}$ Chalmers, Technology Management and Economics, Service Management and Logistics

I. Introduction
II. Architecture of the model
III. Pick-up points modelling
IV. Results \& Conclusions

Introduction

How many lockers/pick-up points are neccesary? Failed deliveries
Collection

ROYAL MAIL TO CONVERT 1,400 POSTBOXES TO FIT PARCELS

May 20, 2019 | E-Commerce, News, Parcel, Post | 0 •

Pec Working with Amazon and InPost, we
Triz also provide parcel lockers at eight
${ }_{\text {por }}^{\text {usil }}$ Tube stations - Amersham, Finchley
to ' Central, Newbury Park, Ruislip, Chalfont
${ }^{\text {red }}$ \& Latimer, Buckhurst Hill, Chorleywood
${ }^{\text {ver }}$ and Ickenham - and Victoria Coach
cli. Station. We plan to significantly expand
${ }^{\mathrm{Par}}$ the number of locker facilities provided
sto at our stations. We will launch a new
be competitive tender exercise this year,
daily commutes.

They give customers the option of
partneers to expana tne network or collection points in London. We are
ing with Amazon and InPost, we
rovide parcelockers at eight
tations - Amersham, Finchley
-al, Newbury Park, Ruislip, Chalfont imer, Buckhurst Hill, Chorleywood zkenham - and Victoria Coach in. We plan to significantly expand umber of locker facilities provided
r starions. We will launch a new
, etitive ten \sim exercise this year,
e existing contract expires in
!mber 2019, to increase the namber
zations across our network.
oting collection points
to employees
Given that the number of personal
deliveries to offices in central London is thought to be between 200,000 and re is significant
id collect lockers
s to help reduce making small parcels of land available to courier companies.

IIIDSEU uElivelies.

We have been working with our delivery partners to expand the network of collection points in London. We are making small parcels of land available to courier companies.
dering goods to
ule\| vvuikptace II al effort to reduce traffic congestion, as part of his plans to improve air quality. The GLA has advised staff to stop having personal deliveries sent to its City Hall and Union Street offices, and promotes the use of alternatives, such as click and

Pick-up points proliferation

Pick-up networks in Europe

		DHL	UPS	Hermes	DPD	Royal Mail	GLs	Mondial Relay	PostNord	PostNL	bpost	Collect+	Colissimo	Total	
-	NL	2000	950		750		700			2850	1430			8680	
- \\|	BE	1250	900		800*		500	600		1000	2370			6620	
-	FR	4300	4000	6300	8300		4800	6300			6500		17500	58000	
-	DE	28000	3400	15000	6000		5000							57400	
-	IT	1900	2800											4700	
-	PL	6000	1300		1100		1500							9900	
플	ES	1250	1500		1600			1700***						4350	
둘	SE	1600	200						1900					3700	
	UK	2200	2800	4500	5000	11700						7000		33200	
	Total	48500	17850	25800	22750	11700	12500	6900	1900	3850	10300	7000	17500	186550	

[^0]padzl

Objective of the model

To estimate the effect of the network of pick-up points on the distances travelled associated to the distribution of ecommerce parcels in an urban area.

- Account for distribution and collecting trips
- Disaggregated (milk run)
- Analytical vs Microsimulation

Architecture of the model

Architecture of the model

- Data from 2 companies delivering e-commerce for a 100 days period
- Aggregated in cells
- Since probably local variations are caused by socio economics characteristics, cells with socioeconomic data
- Synthetic data disaggregated and distributed randomly on cells

Architecture of the model

- Data from pick-up locations of all companies (BIPT)
- Pick-up points are randomly selected to be on use depending of the scenario
- All customers from a given cell must use the closest pick-up point to the centroid of that cell.

Architecture of the model

- Following the preferences of customers and the rate of failed deliveries, three types of trips are generated:
- Home deliveries
- Pick-up point deliveries
- Failed deliveries
- Pick-up points chosen as preferred location
- Personal collecting trips
- From failed deliveries
- From pick-up points chosen as preferred location

Architecture of the model

Architecture of the model

- VKT as main indicator.

Performance Measurements

Factors that will influence the total VKT

- Location of pick-up points
- \% of usage of the pick-up points
- Density of pick-up points

Results

Results

Results

CHALMERS
UNIVERSITY OF TECHNOLOGY

Pick-up travel distance with motorized vehicle

Results

CHALMERS
UNIVERSITY OF TECHNOLOGY

Total distance with motorized vehicle

Conclusions

- Proliferation of pick-up locations is not necessarily translated in a reduction of the net VKT, saturation comes fast.
- A widespread use of pick-up points will certainly have a positive influence on VKT from vans but will have a negative influence on the VKT from the collection trips
- The system is optimized with high adoption and high density but... we are optimizing VKT, the real objective function are the negative externalities, how can we discriminate the negative externalities depending on the affectation level.
- The potential of pick-up points is realized when this facilities follow a sustainable logistics planning: are located in strategic points, have a representative market to attend and have a defined service proposition.

Further research

- Sensitivity to mode choice, how distance affect mode choice and how to encourage behavioural change.
- How adoption of pick-up points is associated with the distance? How service level, willingness to pay and general accessibility can influence the adoption.
- Collaboration, impacts of using the same pick-up points by different companies.
- How negative externalities can be mitigated by the logistics infrastructure at the pick-up points (located in strategic places, loading/unloading bays, drop-off using clean vehicles)
- Influence of manned vs unmanned pick-up points on the mode choice.

[^0]: Including Luxemburg
 10,500 post office branches and
 1,200 customer service points
 1.200 customer service points

